WB 622.09 FRDOCH3394

OVERNIGHT DELIVERY

DEPARTMENT OF THE AIR FORCE 377th Civil Engineer Division (AFMC)

20 Apr 09

MEMORANDUM FOR MR. WILLIAM C. OLSON, CHIEF
GROUNDWATER QUALITY BUREAU (GWQB)
NEW MEXICO ENVIRONMENT DEPARTMENT (NMED)
PO BOX 26110
SANTA FE NM 87502

FROM: 377 MSG/CEANR

2050 Wyoming Blvd, S.E. Building 20685, Suite 116 Kirtland AFB, NM 87117-5270

SUBJECT: Stage 2 Abatement Plan, Extraction Well KAFB-ST-105- EX-01 Aquifer Test Report for Nitrate Contaminated Groundwater, Kirtland Air Force Base (AFB), NM

1 The Natural Resource Management Branch at Kirtland AFB (KAFB) is submitting the subject report. The report documents the second aquifer test completed on Extraction Well EX-01, as part of our aquifer and extraction well reevaluation, as specified in the revised schedule submitted for the Stage 2 Abatement Plan. An electronic copy of the report is included for your records.

- 2. This has been discussed with Mr. Bart Faris of your staff.
- 3. If you have any questions, please do not hesitate to contact me at (505) 853-3484 or Mark Holmes at (505) 846-9005.

LUDIE W. BITNER YF-02 Chief, Restoration Section

Attachments:

- 1. Aquifer test report
- 2. Electronic copy of the Aquifer test report

cc:

NMED GWQB, Mr. Faris w Atchs
NMED HWB, Mr. Kieling w Atch 2 only
NMED HWB, Mr. McDonald w Atchs
SNL, Mr. Skelly w Atchs
CH2M, Mr. Johnston w Atchs
USEPA-Region 6 (6PD-N), Ms. King w/o Atchs
HQ AFMC/A7CVQ, Mr. Fort w/o Atchs
AFCEE/EXEC, Ms. Doll w/o Atchs
MWH, Ms Drain w/o Atchs
Admin. Record, CNM, Montoya Campus w Atch 2 only
AR/IR w Atch 2 only
File w Atchs

KIRTLAND AIR FORCE BASE NEW MEXICO

STAGE 2 ABATEMENT PLAN
EXTRACTION WELL KAFB-ST105-EX01
AQUIFER TEST REPORT
FOR NITRATE CONTAMINATED GROUNDWATER AT
KIRTLAND AIR FORCE BASE, NEW MEXICO

April 2009

377 MSG/CEVR 2050 Wyoming Blvd. SE Kirtland AFB, New Mexico 87117-5270

21 April 2009

Kirtland Air Force Base 377 MSG/CEVR 2050 Wyoming Blvd SE, Building 20685 Suite 122 Kirtland AFB, NM 87117

Attention: Mr. Mark Holmes, Kirtland AFB Project Manager

Subject: SWMU ST105-EX01 Interim Stage 2 Abatement Plan Plume 1 Aquifer Test

Report at Kirtland Air Force Base, New Mexico

Contract No.: FA8903-04-D-8674, Delivery Order No. 006

Dear Mr. Holmes:

This letter report presents the results of the aquifer testing performed at extraction well KAFB-ST105-EX01 to support corrective action decisions related to nitrate contaminated groundwater at Kirtland Air Force Base (AFB), New Mexico. The aquifer testing was conducted under the Air Force Center for Engineering and the Environment (AFCEE) Contract FA8903-04-D-8674, Delivery Order No. 006. All field activities performed during aquifer testing were in compliance with the *Kirtland Air Force Base, Base-Wide Plans for the Environmental Restoration Program* (Kirtland AFB, 2004 update).

If you have any questions or concerns regarding this letter report, please contact me at (801) 617-3221.

Tel: 801 617 3200

Fax: 801 617 4200

Sincerely,

MWH

Deborah Drain

Client Service Manager

Phankl-

cc: Kristie Doll, AFCEE

Douglas Oliver, MWHA SLC-1

File

DOCUMENT CERTIFICATION APRIL 2009

I certify that this document is cleared for public release in accordance with Department of Defense

Directives and Air Force Instructions.

Kirtland Air Force Base Public Affairs
311 ABW-2009-0926

CONTENTS

Sect	ion		Page
1.0	INTR	ODUCTION	1-1
	1.1	Background	1-1
	1.2	Objectives	
	1.3	Approach	
	1.4	Report Organization	
2.0	AQUI 2.1	FER TESTING AND ANALYSIS PROCEDURES	2-1
		2.1.1 Background Test	2-2
		2.1.2 Step Test	
		2.1.3 Constant Rate Test	2-3
		2.1.4 Recovery Test	
	2.2	Data Analysis	
		2.2.1 Water-Level Data Corrections	
		2.2.2 Aquifer Test Analysis	
	2.3	Investigation Derived Waste	
3.0	AQUI	FER TEST RESULTS	3-1
	3.1	Background Test	
	3.2	Step Test	
	3.3	Constant Rate Test	
	3.4	Recovery Test	3-6
	3.5	Aquifer Characteristics	
4.0	CONO	CLUSIONS AND RECOMMENDATIONS	4-1
	4.1	Conclusions	4-1
	4.2	Recommendations	4-1
REFE	ERENCE	S	R-1

TABLES

Table	Page
Table 1-1.	Extraction Well Drilling Summary
Table 1-2.	Extraction Well Construction Details
Table 2-1.	Observation Wells and Pumping Well Construction Details
Table 2-2.	Aquifer Test Water Level Monitoring Frequencies
Table 3-1.	KAFB-ST105-EX001 Step Test Results (15 January 2009)3-1
	Aquifer Test Results
	FIGURES
Figure	Page
Figure 1-1.	Plume 1 Extraction Well KAFB-ST105-EX01 and Monitoring Well Locations
Figure 3-1.	KAFB ST-105 EX001 Step Drawdown Test (15 January 2009)
Figure 3-2.	Water Levels in KAFB-ST105-EX01 During the Constant Rate and Recovery Tests 3-4
Figure 3-3.	Water Levels in KAFB-0508 During the Constant Rate and Recovery Tests
	Water Levels in KAFB-0507 During the Constant Rate and Recovery Tests
	Water Levels in KAFB-0523 During the Constant Rate and Recovery Tests
	Cooper Jacob Method of Analysis of KAFB-ST105-EX01 Drawdown Data
Figure 3-7.	Theis Method of Analysis of KAFB-0508 Drawdown and Recovery Data
	ATTACHMENTS

Aquifer Test Field Forms and Field Notes KAFB Landfill Permit for IDW Disposal

KAFB Groundwater Discharge Authorization

Attachment A Attachment B Attachment C

1.0 INTRODUCTION

This letter report presents the results of the aquifer testing performed in January 2009 as part of the Plume 1 Corrective Measures Implementation (CMI) for the Interim Stage 2 Abatement Plan for Solid Waste Management Unit (SWMU) ST-105 at Kirtland Air Force Base (KAFB), New Mexico. This aquifer test was performed by MWH Americas, Inc (MWH) on behalf of KAFB under the Air Force Center for Engineering and the Environment (AFCEE) Contract FA8903-08-D-8777, Task Order (TO) 006.

1.1 Background

Extraction well KAFB-ST105-EX01 was installed in April 2007 for the Environmental Compliance Program (ECP) pilot study performed under contract number F41624-03-D-8608, Delivery Order 06, Modification 3. The objective of installing this well was to capture Plume 1 nitrate contaminated groundwater as part of the ST-105 Interim Stage 2 Nitrate Abatement Plan for ST-105. As shown in Figure 1-1, the extraction well is located at the leading edge of Plume 1 where elevated nitrate concentrations are consistently above the New Mexico Water Quality Control Commission (NMWQCC) standard of 10 milligrams per liter (mg/L) (20 New Mexico Administrative Code [NMAC] § 7.1). Additionally, this well is upgradient of production wells KAFB-7 and KAFB-16. The extraction well was screened within the upper 100 feet of the regional aquifer where the highest nitrate concentrations have been detected. Below this depth, nitrate concentrations decrease to below groundwater quality standards.

During extraction well installation, two drilling techniques were used due to well depth: air rotary casing hammer (ARCH) and mud rotary. ARCH was used to drill a pilot boring to total depth to collect groundwater samples to determine the vertical nitrate concentration for well screen placement. After completion of ARCH drilling, mud rotary was used to increase the diameter of the pilot boring for subsequent well construction. The drilling and extraction well construction information are listed below in Tables 1-1 and 1-2, respectively. During both ARCH and mud rotary drilling, it was noted that the boring was not producing as much water as typically observed in the regional aquifer in this area of KAFB.

The extraction well was initially developed over a period of seven days in April 2007 using swabbing, bailing, and surging techniques. Because low well yield continued to be observed using physical well development techniques, the well was dosed twice with a chemical dispersant, NuWell 220 in an attempt to improve well yield. An aquifer test was performed in April 2007 following well development that yielded an unexpectedly low sustainable pumping rate of 18.5 gallons per minute (gpm) resulting in a calculated hydraulic conductivity of less than 1 foot per day (USAF, 2007).

Redevelopment of KAFB-ST105-EX01 was performed in August 2008 and included pumping, bailing, jetting, and application of sodium acid pyrophosphate (SAPP). SAPP is an inorganic dispersant designed to disperse clay particles and sediments so that they can be removed during well development. After the SAPP treatment was conducted, jetting and pumping were used to redevelop the screened interval. Redevelopment increased production capacity for KAFB-ST105-EX01, supporting the need to conduct an aquifer test to re-evaluate the pumping capacity of KAFB-ST105-EX01 and recalibrate the groundwater model for KAFB.

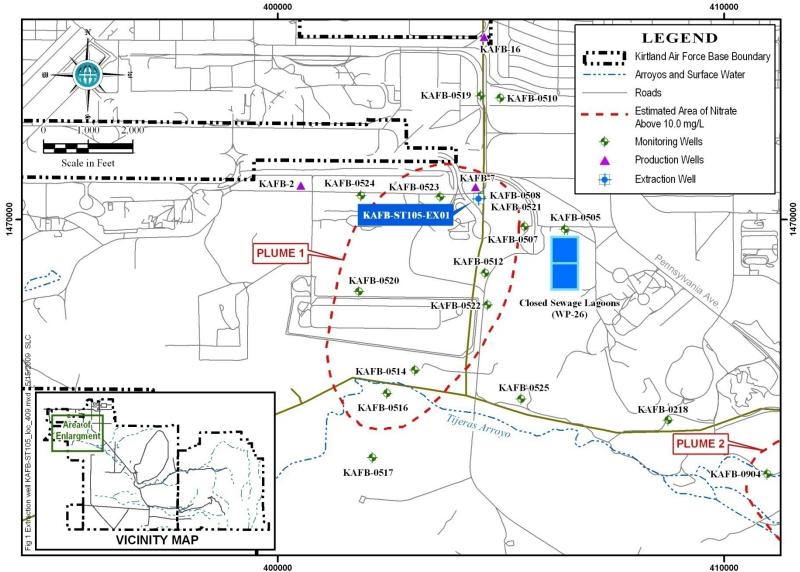


Figure 1-1. Plume 1 Extraction Well KAFB-ST105-EX01 and Monitoring Well Locations, Kirtland Air Force Base, New Mexico

Table 1-1 Extraction Well Drilling Summary

Drilli	ing Method	Depth (ft bgs)	Drill Casing Diameter (inches)	Effective Boring Diameter (inches)
ARCH		0 - 300	11-3/4	12
ARCH		300 - 580	9-5/8	10
Mud Ro	otary	0 - 595	14	14
NA	not applicable			
bgs	below ground	l surface		
ft	feet			

Table 1-2 Extraction Well Construction Details

Construction Details	Depth (ft bgs)	Length (ft)	Material
Total boring depth	595	NA	NA MA
Depth to groundwater	495	NA	NA
Sump	585-575	10	Steel with welded 0.5 ft end cap
Screen	575-505	70	10-inch, 0.020-slot stainless steel
Well riser	505-ground surface +3 ft	508	10-inch welded steel
Filter Pack	595- 484.5	110.5	10/20 Silica sand
Barrier Sand	484.5-478.5	6	Frac-sand
Well Seal	478.5-431	47.5	3/8-inch bentonite chips
Well Seal	431-6	425	Portland cement with bentonite 3% by weight
Protective casing	0-20	20	18-inch diameter steel casing
Centralizers	40-ft centers	NA	Stainless steel
Surface completion	ground surface	NA	Temporary 4 x 4 x 1 ft cement pad Locking cover welded to well casing (painted yellow) 4-protective bollards (painted yellow)
NA Not applicable ft feet bgs below ground s			

The pilot study results are documented in the *Interim Stage 2 Abatement Plan Extraction Well Pilot Study Report for Nitrate Contaminated Groundwater at Kirtland Air Force Base, New Mexico* (USAF, 2007). The pilot study recommendations were:

- To delay connecting extraction well KAFB-ST105-EX01 to the Golf Course Main Pond (GCMP) irrigation line due to the unexpectedly low sustainable pumping rate. At this time, the low sustainable pumping rate and subsequent limited impact of nitrate removal on Plume 1 did not warrant the capital cost of installation of the extraction well operating system, estimated at approximately \$600,000 in 2006 dollars. This cost did not include future operations and maintenance of the system.
- To collect additional hydraulic conductivity data to further assess whether groundwater extraction is a viable treatment alternative for Plume 1.
- To perform groundwater modeling for Plume 1 to collect additional information regarding nitrate migration to further assess the need for groundwater extraction.

Based on these recommendations, additional aquifer testing of extraction well KAFB-ST105-EX01 was performed in January 2009 to assess whether this well would support nitrate removal as part of the ST-105 Stage 2 Nitrate Abatement Plan.

1.2 Objectives

The aquifer test at KAFB-ST105-EX01 was performed to evaluate how redevelopment activities increased well yield and specific capacity, and to evaluate if groundwater extraction is a feasible interimstabilization measure for dissolved-phase contaminants in groundwater. The aquifer test objectives were:

- Evaluate if pumping at KAFB-ST105-EX01 could create a capture zone (i.e., a hydraulic depression) that would reduce downgradient contaminant migration (i.e., provide containment of nitrate contaminated groundwater).
- Assess the connectivity (or lack thereof) of groundwater flow paths intersected by KAFB-ST105-EX01 and the observation wells.
- Estimate hydraulic properties and characteristics (e.g., hydraulic conductivity, transmissivity, storativity) of the nitrate contaminated zone of the regional aquifer.
- Evaluate if pumping KAFB-ST105-EX01 could remove significant contaminant (nitrate) mass.
- Evaluate if pumping would mitigate nitrate migration to KAFB-16 (a downgradient production well).

1.3 Approach

The aquifer testing was performed in accordance with the guidance presented in the following plans:

- Final Base-Wide Plans for Investigations Under the Installation Restoration Program, 2004 Update, Kirtland Air Force Base, Albuquerque, New Mexico (base-wide plans [BWP]) (USAF, 2004); and
- SWMU ST-105 Stage 2 Abatement Plan Extraction Well KAFB-ST105-EX01 Aquifer Test Work Plan for Nitrate Contaminated Groundwater at Kirtland Air Force Base, New Mexico (USAF, 2008).

The applicable procedures outlined in the BWP were followed for field activities unless specifically modified by the task-specific work plan. The KAFB Base-Wide Health and Safety Plan (Appendix F of the BWP) was also followed for all field activities unless specifically modified by the task-specific health and safety plan, included as an attachment to each of the task-specific work plan listed above.

1.4 Report Organization

The report is organized as follows:

- Section 2.0 describes the aquifer testing and analysis procedures.
- Section 3.0 presents the results of the aquifer testing.
- Section 4.0 presents the conclusions of the aquifer testing and recommendations for future work based on the results of the aquifer testing.

2.0 AQUIFER TESTING AND ANALYSIS PROCEDURES

2.1 Aquifer Testing Procedures

The KAFB-ST105-EX01 aquifer test included the following:

- 1. A background monitoring test,
- 2. A variable pumping rate (step) drawdown test,
- 3. A constant discharge rate test, and
- 4. A recovery test.

The aquifer tests included extraction well KAFB-ST105-EX01 and three monitoring wells, KAFB-0508, KAFB-0507, and KAFB-0523, that were used as the observation wells. The well locations are shown on Figure 1-1. The well completion details are provided in Table 2-1. Originally, production well KAFB-7 was to be used as an observation location; however, the transducer cables could not be lowered into the well due to the pump assembly.

The aquifer testing took place between 12 and 21 January 2009 in accordance with the procedures detailed in the SWMU ST-105 Stage 2 Abatement Plan Extraction Well KAFB-ST105-EX01 Aquifer Test Work Plan for Nitrate Contaminated Groundwater at Kirtland Air Force Base, New Mexico (USAF, 2008); hereafter referred to as the Work Plan.

Table 2-1 Observation Wells and Pumping Well Construction Details

Measuring Point Elevation (ft)	Groundwater Depth (ft)	Groundwater Elevation (ft)	Top of Screen (ft)	Bottom of Screen (ft)	Well Diameter (in)	Northing	Easting	Total Depth (ft)
5348.45	497.76	4850.69	505	575	10	1470463	404500	585
5356.15	502.05	4854.10	482.3	507.3	4	1469846	405526	512.3
5349.21	498.70	4850.51	481	506	4	1470510	404552	508
5347.84	493.42	4854.42	600	625	4	1470478	403574	627.5
	Point Elevation (ft) 5348.45 5356.15 5349.21	Point Elevation (ft) Groundwater Depth (ft) 5348.45 497.76 5356.15 502.05 5349.21 498.70	Point Elevation (ft) Groundwater Depth (ft) Groundwater Elevation (ft) 5348.45 497.76 4850.69 5356.15 502.05 4854.10 5349.21 498.70 4850.51	Point Elevation (ft) Groundwater Depth (ft) Groundwater Elevation (ft) Top of Screen (ft) 5348.45 497.76 4850.69 505 5356.15 502.05 4854.10 482.3 5349.21 498.70 4850.51 481	Point Elevation (ft) Groundwater Depth (ft) Groundwater Elevation (ft) Top of Screen (ft) of Screen (ft) 5348.45 497.76 4850.69 505 575 5356.15 502.05 4854.10 482.3 507.3 5349.21 498.70 4850.51 481 506	Point Elevation (ft) Groundwater Depth (ft) Groundwater Elevation (ft) Top of Screen (ft) Well Diameter (in) 5348.45 497.76 4850.69 505 575 10 5356.15 502.05 4854.10 482.3 507.3 4 5349.21 498.70 4850.51 481 506 4	Point Elevation (ft) Groundwater Depth (ft) Groundwater Elevation (ft) Top of Screen (ft) Well Diameter (in) Northing 5348.45 497.76 4850.69 505 575 10 1470463 5356.15 502.05 4854.10 482.3 507.3 4 1469846 5349.21 498.70 4850.51 481 506 4 1470510	Point Elevation (ft) Groundwater Depth (ft) Groundwater Elevation (ft) Top of Screen (ft) Well Diameter (in) Northing Easting 5348.45 497.76 4850.69 505 575 10 1470463 404500 5356.15 502.05 4854.10 482.3 507.3 4 1469846 405526 5349.21 498.70 4850.51 481 506 4 1470510 404552

ft feet in inches

Aquifer Test Equipment and Data Collection. The following equipment were used for the aquifer test:

- A 25 horsepower (hp) Grundfos submersible pump was used for the step and constant rate tests. The pump was set at 574 feet (ft) below the measuring point (bmp) in extraction well KAFB-ST105-EX01.
- An In-situ® BAROTROLL was used to monitor barometric pressure during all testing. It was set 30 ft. below the measuring point in extraction well KAFB-ST105-EX01.

- In-situ® Level TROLLS® model 700 water-level transducers were used to record water-level responses during all tests. Transducers were set at 514 ft. bmp in monitoring well KAFB-0508, 515 ft bmp in monitoring well KAFB-0507, 513 ft bmp in monitoring well KAFB-0523, and 563 ft bmp in extraction well KAFB-ST105-EX01.
- Electric water-level sounders were used to collect manual depth to groundwater measurements during the testing in the event of transducer failure.

Water level measurements were collected electronically and manually as specified in the Work Plan and listed below in Table 2-2. Water levels were measured prior to the background, step, and constant rate testing using the manual water-level indicator and recorded on the aquifer test field forms. The manual water level readings were collected as scheduled in the Work Plan to determine pump and transducer probe placement.

The water-level response to aquifer testing was checked manually to confirm that the transducers were working correctly, to confirm that the initial response was not out of range relative to the theoretical water-level response, and that the aquifer response was reasonable. During the testing, transducer recorded water levels were evaluated routinely using the Win-situ® 5 software designed to work with the In-situ® Level TROLL®.

Table 2-2 Aquifer Test Water Level Monitoring Frequencies

Time Period (Hr)	Pre-Test	Step Test	Constant Rate Test	Recovery Test
0 to 0.5	10 min ^a once ^{b,c}	10 sec ^a 1 min ^b	10 sec ^a 1 min ^b 10 min ^c	10 sec ^a 1 min ^b 10 min ^c
0.5 to 1	10 min ^a	1 min ^a 5 min ^b	1 min ^a 5 min ^b 10 min ^c	1 min ^a 5 min ^b 10 min ^c
1 to 2	10 min ^a	5 min ^a 10 min ^b	5 min ^a 10 min ^{b,c}	5 min ^a 10 min ^{b,c}
2 to 8	10 min ^a	Repeat for each step	10 min ^a 30 min ^{b,c}	10 min ^a 30 min ^{b,c}
8 to 12	10 min ^a	NÁ	10 min ^a 1 hr ^{b,c}	10 min ^a 1 hr ^{b,c}
12 to 72	10 min ^{a,} once each day ^{b,c}	NA	10 min ^a 4 hr ^{b,c}	10 min ^a 12 hr ^{b,c}

^aPressure transducer/datalogger

hr hour minute NA not applicable sec second

Note that water level monitoring only is required in the extraction well during the step test.

2.1.1 Background Test

The purpose of the background test was to establish water-level baselines and to evaluate other potential causes of water-level changes not caused by pumping in KAFB-ST105-EX01 (e.g., long-term trends, barometric pressure changes, diurnal influences). Baseline water levels were monitored with Level

^bManual measurements in test well

b,c Manual measurements in monitoring wells

TROLL 700 transducers for approximately 72-hours prior to the pumping tests in KAFB-ST105-EX01, KAFB-0507, KAFB-0508, and KAFB-0523 (except KAFB-ST105-EX01 in which two days of transducer background water levels were collected). Water levels were measured every ten minutes with Level TROLLs during the background test in KAFB-ST105-EX01 and observation wells KAFB-0507, KAFB-0508, and KAFB-0523. Background monitoring began on 12 January 2009 and continued until 15 January 2009. Water levels also were measured manually with an electric water-level sounder on a daily basis during the background test.

Barometric pressure was also measured every ten minutes with a barometric-pressure transducer (BAROTROLL) during the background test, as well as during the step, constant rate discharge, and recovery tests. The barometric-pressure transducer was installed in monitoring well KAFB-ST105-EX01 approximately 30 feet below ground surface to minimize diurnal temperature variations, which could result in changes in measured barometric pressure due to heating and cooling of the pressure transducer rather than actual changes in atmospheric pressure. Manual water levels were collected during the entire testing program.

2.1.2 Step Test

A variable pumping rate drawdown test (hereafter referred to as a step test) was performed at KAFB-ST105-EX01 to determine if the well would yield sufficient water to perform a 72-hour constant rate discharge test and to establish the optimal pumping rate for the constant rate discharge test. The step test was performed on 15 January 2009 by pumping KAFB-ST105-EX01 at successively higher rates. Steps were performed at pumping rates of 25, 40, 53, and 55 gpm. Each step ran for approximately two hours each. Based on existing site data it was anticipated that the maximum pumping rate would not exceed 45 gpm; however, based on the results of the step test it was determined that the sustainable pumping rate would exceed 45 gpm. KAFB was notified of the higher pumping rate and approval was granted to run the pump at a rate higher than specified in the Work Plan. Manual and electronic measurement frequencies complied with the Work Plan.

2.1.3 Constant Rate Test

KAFB-ST105-EX01 was pumped at a constant rate of 53 gpm (determined by the step test) for 73 hours during the constant rate test from 13:00 MST on 16 January 2009 and ending at 14:00 MST on 19 January 2009. Following the step test and prior to the start of the constant rate test, the water level in KAFB-ST105-EX01 was allowed to recover to 99.9 percent of its pre-pumping level (prior to step testing). During the constant rate test, water levels were monitored in KAFB-ST105-EX01, KAFB-0507, KAFB-0508, and KAFB-0523 to evaluate the effects of long-term pumping, and to calculate aquifer parameters. Manual and electronic measurement frequencies complied with the Work Plan.

2.1.4 Recovery Test

Immediately following the constant rate test (starting at 14:00 on 19 January 2009), water levels were monitored for a period of approximately 67.5 hours for the pumping well to 73.5 hours for the observation wells. The purpose of this monitoring was to evaluate how water levels recovered after pumping from KAFB-ST105-EX01 was stopped. Manual and electronic measurement frequencies complied with the Work Plan.

2.2 Data Analysis

2.2.1 Water-Level Data Corrections

Prior to analysis of aquifer tests, water-level data collected during the constant rate and recovery tests were corrected for the observed long-term water-level trends and changes associated with barometric pressure fluctuations. To calculate the barometric effects, water level and barometric pressure data from the background test were fit with a linear regression. For example, the water level in KAFB-0508 changed by 0.0517 feet per millimeter of mercury (ft/mm Hg) change in barometric pressure. Using this relationship, the effects of barometric pressure changes were removed from the data for KAFB-0508 for the constant rate and recovery tests by multiplying the change (-0.0517 feet/mm Hg) by the barometric pressure (normalized to the barometric pressure at the start of the test) and then subtracting this value from each corresponding water level data point. To calculate long-term trends, the background test data were corrected for barometric pressure then fit with a linear regression (water level vs. time). The slope from the linear regression for KAFB-0508 was 0.039 feet/day indicating an increasing water level trend during the background test. Using this relationship, the long-term trend was removed from the KAFB-0508 water-level data for the constant rate and recovery tests were corrected by subtracting 0.039 feet/day from the water levels. For this analysis, this rate of water level increase was assumed to occur throughout the constant rate and recovery tests. Following removal of barometric pressure effects and long-term trends, the resulting water levels had a small-scale periodic variation of less than 0.05 feet with a period of approximately 12 hours. This variation occurred throughout the background, constant rate and recovery test and is likely a result of earth tides.

Several studies have shown how water levels in aquifers vary due to earth tides, which are caused by the gravitational pull of the moon (Marechal et al., 2002; Hsieh et al., 1988; Bredehoeft, 1967). Measurable water-level fluctuations in wells are caused by the dilation of the earth due mainly to the position of the moon and the sun (Marechal et al., 2002). Due to the relative small magnitude of variation caused by earth tides (less than 0.05 feet), these were not removed from the data. If the earth tides had obscured the drawdown results, they would have also been removed.

2.2.2 Aquifer Test Analysis

To estimate transmissivity, hydraulic conductivity, and storativity of the hydrostratigraphic unit intersected by KAFB-ST105-EX01, the water-level displacements (drawdown) versus time data during the constant rate discharge and recovery tests were analyzed using the standard well hydraulic analysis methods with the aquifer test analysis program AQTESOLV® (Duffield, 2003). Water level data from the constant rate and recovery tests that had been corrected for barometric pressure effects and long-term trends were used in the analysis. The aquifer was assumed to be unconfined and assumed to have a saturated thickness of 67 ft. This was calculated using the pre-pumping static depth to water value of 498 ft. extending to the top of the confining layer of silt at a depth of 565 ft. Observations wells KAFB-0507 and KAFB-0523 did not appear to show a response to pumping (i.e., no drawdown observed), thus aquifer characteristics could not be calculated with water level data from these two wells.

2.3 Investigation Derived Waste

Investigation Derived Waste was handled in accordance with the Waste Management Plan (Appendix E of the BWP; USAF, 2004). The types of IDW generated during the pilot study include personal protective equipment (PPE), miscellaneous disposable equipment, and water pumped from KAFB-ST105-EX01. All field activities were conducted in Level D PPE; therefore, the only PPE that were discarded was disposable work gloves. The PPE and miscellaneous disposable equipment (e.g., paper towels, gloves, etc.) were discarded as non-hazardous municipal waste in the KAFB landfill. The KAFB permit for waste disposal is included in Attachment B.

All water from the aquifer testing program was discharged to a surface water drainage feature near the wellhead under the existing KAFB National Pollution Discharge Elimination System (NPDES) permit. The KAFB NPDES permit requires that nitrate+nitrite concentrations in the discharge water be less than the *New Mexico Water Quality Standards for Interstate and Intrastate Surface Waters; Irrigation, Livestock Watering, and Wildlife Habitat Uses, 20.6.4.900J NMAC* standard of 132 mg/L. The highest nitrate concentration measured in groundwater from KAFB-ST105-EX01 was 33 mg/L (March 2007), which is below this standard. Approximately 250,000 gallons of water were discharged during the aquifer testing. An energy dissipation device approved by KAFB prior to groundwater discharge was used to prevent erosion of the ground surface during discharge of the water.

3.0 AQUIFER TEST RESULTS

3.1 Background Test

Water levels increased steadily during the background test in all wells. These increases in water levels ranged from 0.018 to 0.038 feet/day during the background test for the four wells monitored. The cause of this water-level increase is unknown, but likely a result of regional recharge. In addition to long-term trends in water levels, water levels also showed response to barometric pressure changes and earth tides. In all cases, water-level changes associated with barometric pressure changes had a maximum variation of approximately 0.13 feet during the test period. Following removal of barometric pressure effects and long-term trends, the resulting water levels had a small-scale periodic variation of less than 0.05 feet with a period of approximately 12 hours, likely were the result of earth tides.

3.2 Step Test

The results of the step test are listed in Table 3-1. Specific capacity values were calculated with the pumping rate and drawdown data collected at the end of each step. Water level data from the step test are provided in Figure 3-1. The water level recovery observed between the 53 gpm and 55 gpm step was a result of discontinuation of pumping for 20 minutes while the one-inch diameter discharge pipe was replaced with two-inch diameter discharge pipe in to achieve a higher pumping rate.

A pumping rate of 15 gpm was attempted for the first step, but a steady pumping rate could not be maintained. As a result, this step was discontinued and the water level in KAFB-ST105-EX01 was allowed to recovery prior to starting the 25 gpm step. Although the aquifer would support a pumping rate greater than 55 gpm, the pump used for the test (25 hp) was operating at maximum capacity due to well depth and lift, thus the rate could not be increased above 55 gpm. The one-inch diameter discharge pipe was replaced with two-inch diameter discharge pipe towards the end of the step test to try and achieve a higher pumping rate, but was minimally successful. Because this pumping rate was not significantly greater than that of the previous step, the step was not run for the full two hours. To allow for minor

Table 3-1 KAFB ST-105 EX001 Step Test Results (15 January 2009)

adjustments (increases) in pumping rate during the constant rate test, the pumping rate was set at 53 gpm.

Step	Pumping Rate (gpm)			Duration (hours)
1	25	2.2	11.4	2
2	40	4.5	4.5 8.9	
3	53	6.8	7.8	2
4	55	6.8	8.1	0.5
ft gpm	feet gallons per minute	1	,	

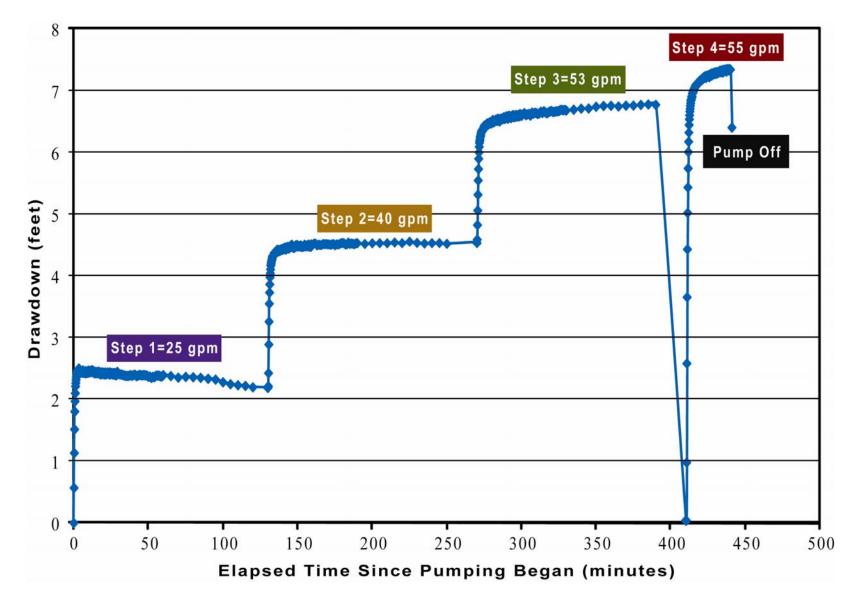


Figure 3-1. KAFB ST-105 EX001 Step Drawdown Test (15 January 2009)

3.3 Constant Rate Test

During the constant rate test, KAFB-ST105-EX01 was pumped at approximately 53 gpm for 72 hours. The water level in KAFB-ST105-EX01 declined by 6.9 feet during the test (see Figure 3-2), resulting in a specific capacity of 7.7 gpm/ft of drawdown, which corresponds closely with the specific capacities calculated for the last two steps of the step test. Pumping of well KAFB-ST105-EX01 impacted water levels by up to 0.3 ft. in KAFB-0508 (see Figure 3-3), which is located approximately 70 feet from KAFB-ST105-EX01, indicating that this well is hydraulically connected to KAFB-ST105-EX01. The elevation of the screened interval of monitoring well KAFB-0508 corresponds with the top portion of the screen in KAFB-ST105-EX01. Minor diurnal variations evident in the data are attributable to earth tides, but are insignificant relative to the drawdown caused by pumping at KAFB-ST105-EX01. The water levels in the other observation wells (KAFB-0507 and KAFB-0523) showed no changes related to pumping at KAFB-ST105-EX01, either prior to or following correction of water levels for long-term trends and barometric pressure changes (see Figure 3-4 and 3-5). KAFB-0507 and KAFB-0523 are 1,197 and 927 ft. from KAFB-ST105-EX01, respectively.

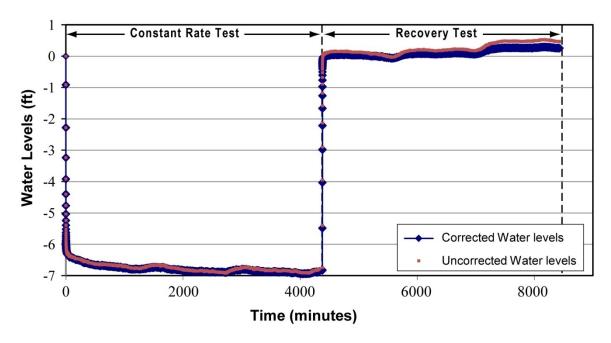


Figure 3-2. Water Levels in KAFB-ST105-EX01 During the Constant Rate and Recovery Tests

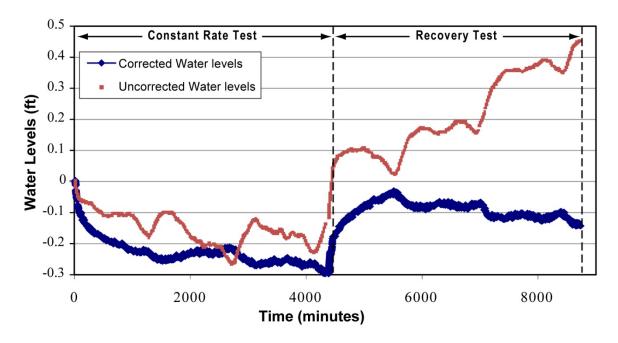


Figure 3-3. Water Levels in KAFB-0508 During the Constant Rate and Recovery Tests

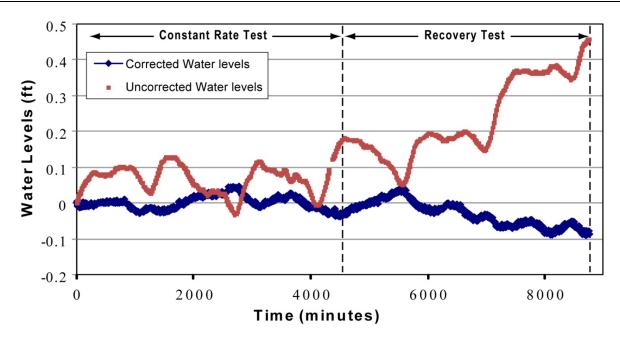


Figure 3-4. Water Levels in KAFB-0507 During the Constant Rate and Recovery Tests

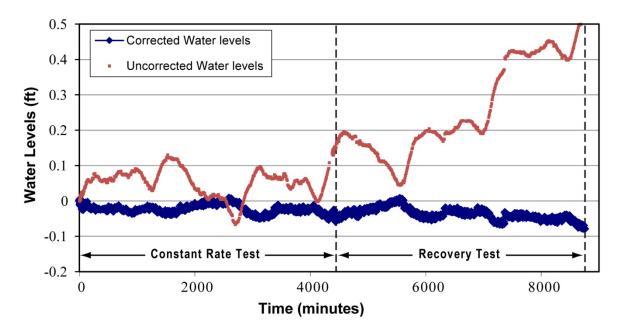
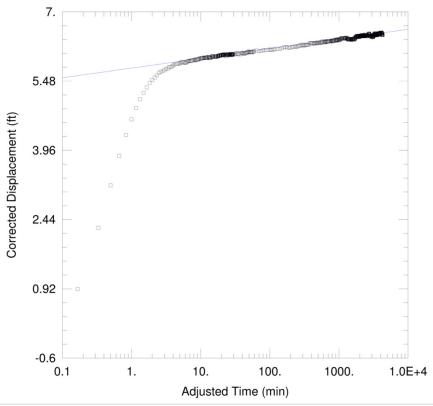


Figure 3-5. Water Levels in KAFB-0523 During the Constant Rate and Recovery Tests

3.4 Recovery Test

The water-level in the KAFB-ST105-EX01 recovered by 6.7 feet within eight minutes (approximately 97 percent of drawdown). Recovery data in KAFB-ST105-EX01 continued to be collected until 09:30 on 22 January 2009 (67.5 hours). Water levels in KAFB-0508 began to recover approximately three minutes after pumping of KAFB-ST105-EX01 was stopped and had recovered by almost 75 percent after one hour. Recovery data in KAFB-0508 continued to be collected until 15:30 on 22 January 2009 (73.5 hours). Water levels were monitored in KAFB-0507 and KAFB-0523 during the recovery test, but no response attributable to the aquifer test was visible.

3.5 Aguifer Characteristics


The corrected water-level data for KAFB-ST105-EX01 and KAFB-0508 were analyzed to estimate aquifer hydraulic property values. The results of these analyses are listed in Table 3-2.

Using water level data from extraction well KAFB-ST105-EX 01, a transmissivity of 8,800 ft²/day and hydraulic conductivity of 131 ft/day were calculated using the Cooper Jacob straight line method (see Figure 3-6). The Theis method was attempted, but a good fit of the data could not be achieved. Storativity cannot be calculated in the pumping well due to energy losses as the water rushes into the well (Fetter, 1988).

For observation well KAFB-0508 the transmissivity of approximately 16,500 ft²/day was calculated using the Theis method using both drawdown and recovery data (see Figure 3-7). Assuming an aquifer thickness of 67 ft, the hydraulic conductivity calculated is 246 ft/day. The storativity calculated using the Theis method using both drawdown and recovery data, is 0.05 (dimensionless). The higher values of transmissivity and hydraulic conductivity calculated with water level data from KAFB-0508 relative to those calculated with data from KAFB-ST105-EX01 are likely due to well losses and well inefficiencies in the pumping well. Therefore, the aquifer parameter values calculated with data from KAFB-0508 are more representative of the aquifer.

Table 3-2 Aquifer Test Results

Well ID	Hydraulic Conductivity (ft/day)	Transmissivity (ft²/day)	Storativity (dimensionless)	Saturated Thickness (ft)	Distance from pumping well (ft)	Method Used
KAFB-ST105- EX01	131	8,800	NA	67	0	Cooper Jacob
KAFB-507	NA	NA	NA	67	1197	NA
KAFB-508	246	16,500	0.05	67	70	Theis
KAFB-523	NA	NA	NA	67	927	NA

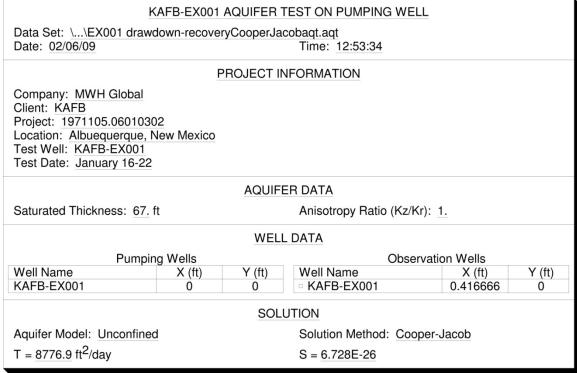
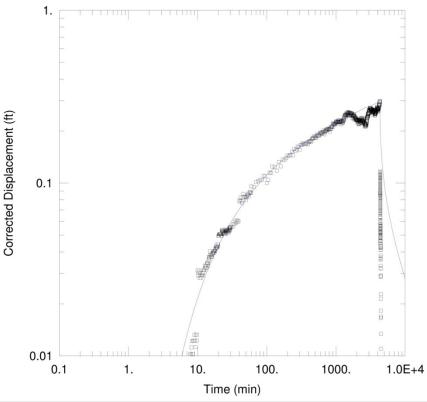



Figure 3-6. Cooper Jacob Method of Analysis of KAFB-ST105-EX01 Drawdown Data

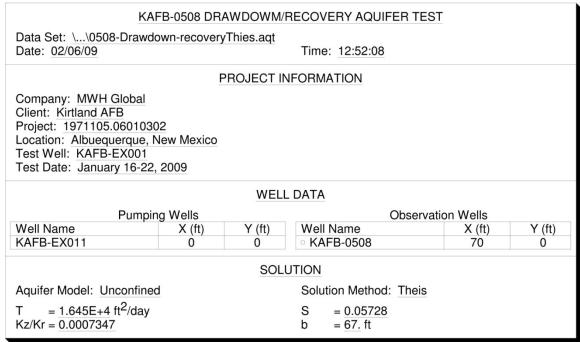


Figure 3-7. Theis Method of Analysis of KAFB-0508 Drawdown and Recovery Data

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

Prior to redevelopment, extraction well KAFB-ST105-EX01 did not perform as expected due to low sustainable pumping rates. Data collected during well re-development in August 2008 suggested that the redevelopment had improved well performance, which was confirmed by the aquifer test performed in January 2009. The aquifer test yielded aquifer parameter values that are more consistent with the original expectations for the aquifer and the values used in the groundwater model of the area constructed by the USGS (McAda and Barroll, 2002; Ruskauff, 2003). Additionally, the results of the aquifer test indicate that a pumping rate greater than 55 gpm is sustainable for extraction well KAFB-ST105-EX01.

These data are of sufficient quality to meet the objectives of this project, which were to:

- Evaluate if pumping at KAFB-ST105-EX01 could create a capture zone (i.e., a hydraulic depression) that would reduce downgradient contaminant migration (i.e., provide containment of nitrate contaminated groundwater).
- Assess the connectivity (or lack thereof) of groundwater flow paths intersected by KAFB-ST105-EX01 and the observation wells.
- Estimate hydraulic properties and characteristics (e.g., hydraulic conductivity, transmissivity, storativity) of the nitrate contaminated zone of the regional aquifer.
- Evaluate if pumping KAFB-ST105-EX01 could remove significant contaminant (nitrate) mass.
- Evaluate if pumping would mitigate nitrate migration to KAFB-16 (a downgradient production well).

Based on a preliminary assessment the aquifer test results indicate that use of extraction well KAFB-ST105-EX01 to remove Plume 1 nitrate contaminated groundwater will meet the objectives of the Stage 2 Abatement Plan for nitrate capture and nitrate mass reduction in groundwater. The aquifer test data will be used in the MODFLOW and MT3DMS groundwater flow and contaminant transport modeling (performed under separate contract) that will further assess nitrate capture and mass reduction.

4.2 Recommendations

Based on the aquifer test data from April 2007 and the initial well development results from April 2007 it was thought that the maximum size pump that could be used for the aquifer testing was 25 hp; if a larger pump was used for the test the groundwater discharge would be insufficient to cool the pump resulting in pump damage. However, the results of the aquifer testing are favorable, and indicate that a pumping rate greater than 55 gpm can be sustained. In addition, preliminary results (unpublished) of the groundwater modeling indicate that a pumping rate of approximately 140 gpm may be sustainable. However, these data are extrapolated from the results of the aquifer test and actual pumping data are needed to further assess sustainable pumping rates. It is recommended that additional aquifer testing be performed to determine the maximum sustainable pumping rate for this well to refine the groundwater model and further refine the capture zone analysis. In addition, if this well is brought on line to support groundwater

extraction as part of the ST-105 nitrate abatement plan; these data will be required for determining the size of permanent pump to be installed in the extraction well.

REFERENCES

- Bredehoeft, J.D., 1967. *Response of Well-Aquifer Systems to Earth Tides*. Journal of Geophysical Research 72:3075-3087.
- Duffield, G.M., 2003. AQTESOLV for Windows, version 3.2. HydroSOLVE, Inc. Reston, VA.
- Fetter, C.W., 1988. Applied Hydrogeology, Second Edition. Merrill Publishing Company. 592 p.
- Hseih, P.A., J.D. Bredehoeft, and S. A. Rojstaczer, 1988. *Response of Well-Aquifer Systems to Earth Tides: Problem Revisited.* Water Resources Research 24:468-472.
- Marechal, J.C., M.P. Sarma, S. Ahmed, and P. Lachassagne, 2002. *Establishment of Earth Tide Effect on Water-Level Fluctuations in an Unconfined Hard Rock Aquifer Using Spectral Analysis*. Current Science 83: 61-64.
- McAda, D.P., and P. Barroll, 2002. *Simulation of Ground-Water Flow in the Middle Rio Grande Basin Between Cochiti and San Acacia, New Mexico*. Water-Resources Investigations Report 02-4200, U.S. Geological Survey, Albuquerque, New Mexico. 81 p.
- Ruskauff, G., 2003. *Memorandum: Review of Latest Middle Rio Grande Model (WRIR 02-4200) Applicability to SNL/KAFB Use.* Prepared by INTERA Incorporated for Sue Collins, Sandia National Laboratories, June 27, 2003.
- USAF, 2004. *Base-Wide Plans for the Environmental Restoration Program, Kirtland Air Force Base* (USAF, 2004 update).
- USAF, 2007. Interim Stage 2 Abatement Plan Extraction Well Pilot Study Report for Nitrate Contaminated Groundwater at Kirtland Air Force Base, New Mexico.
- USAF, 2008. SWMU ST-105 Interim Stage 2 Abatement Plan Plume 1 Aquifer Test Work Plan at Kirtland Air Force Base, New Mexico.

ATTACHMENT A AQUIFER TEST FIELD FORMS AND FIELD NOTES

AQUIFER TEST DATA SHEET (PUMPING WELL)

Page _____ of _____

PROJECT NAME DATE: TYPE OF TEST: MEASURING EQ	ARVI	441	PROJECT I PUMP DEP PUMPED V	VELL NO:	11/2.04 74.00 '	-	DISTANCE		AFB-57105-1=XD BAOKGROUND PUMPING WELL: 0' T: DWA	01
Pump On: Date/ Pump Off: Date/ Duration of Aqui	Pump On: Date/Time(t) Pump Off: Date/Time(t') Duration of Aquifer Test: Pumping: 72 14 17			Water Level Data Pretest Water Level 497.76 Static Water Level: 497.76 Measuring Point: Elevation of Measuring Point: DTB - 588, 49						
	Time Since Pump Started	Time Since Pump Stopped	Depth to Water	Pressure Transducer	Flow Rate	¥.	Specific Conductivity	Temperature	Comments on factors affecting test data	
Date	(min)	(min)	. (ft)	(XD)	(gpm)	_				
1-12-19	0910		497.76			_				
1-14-09	1900		497.60							
1-15-04	,		497.65						STOPPED GARKER	oun's
// / /	00,0		117.03							6
						<u> </u>			,	
	-							,		
						-		-		
			 							
								-		
								-		
		-				-	-	 		
	-	-				 				
						1				

Page / of 2

PROJECT NAME KAFB	PROJECT NO: 197///2.	PIEZO NO: EX-00/
DATE:	PUMP DEPTH:	TEST NO: STEP 259PM
TYPE OF TEST:	PUMPED WELL NO:	DISTANCE FROM PUMPING WELL:
MEASURING EQUIPMENT:		HYDROGEOLOGIST:

Pump On Date/Time Pump Off Date/Time Duration of Aquifer Test Pumping Recovery		Water Level Data Pretest Water Level Static Water Level 497.70 Measuring Point Elevation of Measuring Point 259 pm			Time Data Continuation		Water Level Data Continuation		
Date	Time	Depth to Water	Pressure (C) Transducer	(dbw)	Date	Time	Depth to Water	X Pressure (Transducer	Flow
1-15-09	1220	497.70	(rib)	0	Date	11110	(iii)	(۸0)	(gpm)
	1	499.81		25.36					
	2	500.16	-	25.46					
	3	500.20		25.41					
	4	500.19		24.80					
	5	500-17		24.55					
	6	500.16		24.50					
	7	500.16		24.40					
	8	500.16		24.40					
	9	500.16		24.40					
	10	500.16		24.35					
	11	500-16		24.35					
	12	500.16		24.40					
	13	500-16		24.30					
	14	500-16		24.25					
	15	500-12		24./8					
	16	50008		24.10					
	17	500.08		24.00					
	18	500.06	- 3	23.95					
	19	500.0%		2400					
	20	500.14		13.95					
	21	500.14		23.95					
	22	500-14		28.95					
	23	500.14		23.95					
	24	500.14		24.00					
	25	500.14		24.00					
	26	500.14		23.95					
	27	500.14		23.95					

Page 2 of 2

PROJECT NAME: KAFIS	PROJECT NO: 1971117 PUMP DEPTH:	PIEZO NO: KAFB-EX-001 TEST NO: 25 9 pm STEP
TYPE OF TEST:	PUMPED WELL NO:	DISTANCE FROM PUMPING WELL: HYDROGEOLOGIST:

Time I	Data	Wat	er Level Data		Time	Data	Water Level Data		
ump On Date/Tir	ne	Pretest Water Le	vel		Continuation		Continuation		
ump Off Date/Tir	ne	Static Water Level: Measuring Point Elevation of Measuring Point:					1		
Duration of Aquifer	Test						1		
oumping	-						1		
Recovery		259pm					L .		
Date	Time	Depth to Water	Pressure (C) Transducer	(dbw) Rate	Date	Time	Depth to Water	X Pressure O Transducer	Flow Rate
1-13-09	28	500.14	(///)	23.95	Date	Time	(11)	(\D)	(gpm)
1	29	500-14		23.95					
	30	500-14		23.95					
	35	500.10		23.54					
	40	500.10		23.59					
	45	500.10		13.59					
	50	500.09		23.39					
	55	500.09		23.49					
	60	500.09		23.49					
	70	500.07		23.29					
	80	500.07		23.34					
	90	500.05		22.94					
	100	499.96		22.28					
	110	499.94		22.23					
	120	499.91		21.88		,			
Mya		Adina	TOTA		- 341	08 9A/10	digits	_/	
		,		13-	340	14	Angla	e	
					479	100	,.	7	

(OBSERVATION WELLS)

Page ___ of ____

PROJECT NAME: KAFB	PROJECT NO: 1971/1Z.	06010401 PIEZO NO: KAFB-EX-00	01
DATE 1-19-09	PUMP DEPTH: 5741	TEST NO STED	
TYPE OF TEST ACO	PUMPED WELL NO: KAFB-	EX - 00 DISTANCE FROM PUMPING WELL:	0
MEASURING EQUIPMENT: Ins	TU WELL TRANSDURYA	HYDROGEOLOGIST:	

Pump On Date/Time 1-15-09 Pump Off Date/Time 1-15-09 Duration of Aquifer Test: Pumping					Time Data Continuation		Water Level Data Continuation		
Date	Time	Depth to Water	X Pressure (C Transducer	(dbw)	Date	Time	Depth to Water	(X X) Pressure (C) Transducer	(dbun)
	1	501.46		40.08					
	Z	501.92		40.03					
	3	502,0Z		39.98					
	4	50808		39.98					
	5	502.10		39.88					
	6	502.12		39.93					
	7	502.14		39.93					
	8	502.15		39.93					
	9	502.15		39.93					
	10	502.16		39.93					
	11	502.18		39.93					
	12	500.18		39.93					
	13	502.19		39.98					
	14	502.20		40.03					
	15	502.20		39.98					
	16	502.20		39.98					
	17	502.20		39.98					
	18	500.41		39.93					
	19	503.21		39.98					
	20	503.21		39.93					
	2/	502.22		39.88					
	22	502.11		39.88					
	23	502.12		39.88					
	24	503.22		39.83					
	25	502.22		39.83					
	26	502.22		39.88					
	27	503.22		39.88					

Page <u>Z</u> of <u>Z</u>

PROJECT NAME: DATE: 1-15-09 TYPE OF TEST: AQ MEASURING EQUIPMENT:	PROJECT NO: 1971113.06010401 PUMP DEPTH: 574.001 PUMPED WELL NO:	PIEZO NO: KAFB-EX-001 TEST NO: STep 40 g pm DISTANCE FROM PUMPING WELL: 0 HYDROGEOLOGIST: DWA
MEASURING EQUIPMENT.		HYDROGEOLOGIST:

Time Data Pump On: Date/Time Pump Off: Date/Time Duration of Aquifer Test Pumping Recovery		Pretest Water Lev Static Water Lev Measuring Point Elevation of Mea	el			Time Data Continuation		Water Level Data Continuation			
Date 1-15-09	Time	202.13 Depth to Water	X Pressure (C Transducer	(gpm) Sate water	Date	Time	(t) Depth to Water	X Pressure (C Transducer	(dbw)		
	29	503.23		39.88							
	30	502.33		39.88							
	35	502.24		39.83							
	40	M1528	d								
	45	M145	ed								
	50	502.20		39.78							
	55	502.19		39.78	•						
	60	502.18		39.78							
	70	502.19		39.73							
	80	502.25		39.68							
	90	500 37		39.73							
	100	502.37		39.63							
	110	500.27		39.63							
	120	502.13		39 13							
	To	TALIZZA	Ryan	Un Re	1 - 85	38	PAllons				
	10	11-67-	- CAU	7 3	- 483	890	11				
				- 1	,,,,	012	1''				
							+ +				
								-			
								_			

Conversion Factors: 1 PSI = 2.31 feet 1 cubic foot = 7.48 gallons

A = digital B = Analog

585

Page __ of ___

PROJECT NAME: KAFB	PROJECT NO: 1941112 06010401	PIEZO NO: K19 F 3 - EX-001
DATE: 1-15-09	PUMP DEPTH: 574/	TEST NO: STep-60 gpm
TYPE OF TEST: A	PUMPED WELL NO:	DISTANCE FROM PUMPING WELL:
MEASURING EQUIPMENT: W	I - Transdreen	HYDROGEOLOGIST:

Pump On Date/Time Pump Off Date/Time		Water Level Data			Time Data		Water Level Data			
		Pretest Water Le			Continuation		Continuation			
		Static Water Level								
Duration of Aquife		Measuring Point Elevation of Measuring Point 53.95 Wide open								
Pumping					4 hoove	h 1" 1	PPE			
Recovery		3975 Wide offer			1 11001	, , , , , ,	7			
Date	Time	Depth to Water	Pressure O Transducer	(mdb) Rate	Date	Time	Depth to Water	X) Pressure (C) Transducer	(mdb)	
	/	504.00	,	53.85						
	2	MISS	4							
	3	504.06		53.90						
	4	504.11		53.90						
	5	504.15		53.90						
	6	504.16		53.85						
	7	504.19		53.90						
	8	504.30		5390						
	9	504.22		53,40			Di-			
	10	504.23		5390						
	11	504.23		53 90						
	12	504.26		53.95						
	13	504.37		53.95						
	14	m145	d							
	15	M:55	d	ST.						
	16	504.38		53.95						
	17	504.38		53 95						
	18	504.28		5395						
	09	504.29		53.95						
	20	504.80		54.00						
	21	504.29		5395						
	22	504.29		53,95				-		
	23	504,30		5395						
	24	504.31		53.95						
	25	504,32		53.95						
	26	504.3z		53.95						
	27	504.32		53.95						

Page Z of Z

DATE: TYPE OF TEST	QUIPMENT:	PUMP [DEPTH:		TEST NO: DISTANCE FF	KAFB-EX-001 STep-60gpm ROM PUMPING WELL:			
Pump On Date/Time Pump Off Date/Time Duration of Aquifer Test: Pumping Recovery		Water Level Data Pretest Water Level Static Water Level: Measuring Point: Elevation of Measuring Point: 549pm with			Time Data Continuation Value Wide a		Water Level Data Continuation Open Through J"		
Date	Time 28 29 30 35 40 45 60 55 40 75 73 80 90 110 120	504.33 504.33 504.35 504.35 504.38 504.38 504.38 504.38 504.42 504.42 504.42 504.43 504.43 504.43 504.43 504.43	X Pressure (O Transducer	53,95 53,95 53,95 54,06 54,06 54,00 54,00 54,01 54,31 54,31 54,31 54,41 54,41	Date	Time	(a) Depth to Water	(X) Pressure	(gpm)

AQUIFER TEST DATA SHEET (PUMPING WELL)

Page / of /

Time Data Pump On: Date/Time(t) Pump Off: Date/Time(t') Duration of Aquifer Test: Pumping			Water Level Data Pretest Water Level Static Water Level: Measuring Point: Elevation of Measuring Point: 709pm				Water Quality		
	Time Since Pump Started	Time Since Pump Stopped	Depth to Water	Pressure Transducer	Flow Rate	Ŧ	Specific	Temperature	Comments on factors affecting test data
Date	(min)	(min)	(ft)	(XD)	(gpm)				
~15-09	5		497.68		56.28				
	10		504.90		54.64				
	15		504.98		54.93				
	20		505.03		54.96				
	25		505.07		54.94				
	30		505.10		54.95				
flou	15 TO	598		No. of the last of	of the	/" p	HARA	len,	with digita
90	fin end		o by A	un of f	ew t	Lan	lase	ten in	est shot down

AQUIFER TEST DATA SHEET (PUMPING WELL)

Page <u>/</u> of <u>3</u>

PROJECT NAME DATE: TYPE OF TEST: MEASURING EQ	A	R	PUMP DEPT	o: 197 h: ell no: _ enns d	1112.060 574.00 EX-00 VIYM	1040			B-ST105- EX- 2014 TANY 6 53, UMPING WELL: 0
Pump On: Date/ Pump Off: Date/ Pump off Date/ Duration of Aqui Pumping: Recovery:	Time	(t')	Water Levation of Mea	el: 497	7.76 7.77 LN		Water Quality		
	Time Since Pump Started	Time Since Pump Stopped	Depth to Water	Pressure Transducer	Flow Rate	Ŧ	Specific Conductivity	Temperature	Comments on factors affecting test data
Date	(min)	(min)	. (ft)	(XD)	(gpm)				
1-16-09	1		50x2400		52.84				
	2		503.50		52.74				
	3		508.70		52.74				
	4		503.81		52.68				
	5		503.85		52,68				
	6		503.86		53.63				
	7		503-86		52.79				
	8		503.95		50.69				10
	9		503.97		52.68				
	10		503.98		52-63				
	11		503.99		52.74				
	12		504.00		52.68	- 1			
	13		504.01		59.58				
	14		504.02		52.58				
	15		504.03		52-63				
	16		504.03		52.58		-		
			504.04		52.58				
	18		504.04		52.53				
	19		504.06		58.53				
	20		504.04		50,58				
	2/		504.00		52.48				
	22		504.06		52.48				
	23		504.06		52.48				
	24		504.07		52.48				
	25		504.07		52.48				
	26		50407		52.48				
1	27		504.08		52.48				

AQUIFER TEST DATA SHEET (PUMPING WELL)

Page **2** of **3**

Time Data mp On: Date/Time(t) mp Off: Date/Time(t') ration of Aquifer Test: mping covery Time Data Water Level Data Pretest Water Level Static Water Level: Measuring Point: Elevation of Measuring Point: 5 2 . 48 9 pm				Water Quality					
	Time Since Pump Started	Time Since Pump Stopped	Depth to Water	Pressure Transducer	Flow Rate	Ħ	Specific Conductivity	Temperature	Comments on factors affecting test data
Date	(min)	(min)	(ft)	(XD)	(gpm)				
16-09	28		504.08		52.48				
1	29	4	504.08		52.48				
-	30	-	504.08		52.48				
1	35		504.10		50,53				
	40		504-11		50.53			_	
	45		504.12		50.48				
	50		504.13		62.53				
	55		504.15		53,58				
	40		504.09		52 58				
-	70		504.14		52.48				
	80		504.15		52.48			_	
	90		504.11		52.53		_		
	100		504.11		52.58			_	
	110		504.12		52.53	_			
	120		504,13		52.53				
1	150		504.15		60108				
	180		504.31		5268				
-	2/0		504.26		52.43			-	N 92 N 10/2/100
	240		504.28		52.68				digital @ 1800
	270		504.30		52,74				32193
	300		504.29		52.94	-			KOTIAFRIC
	330		504.30		52.89				5076858180 Analog
201	360		504.3		52.79				A18/09
390									/
	420		504.32		53.99			_	
	450		504.32		5299	-			
	480		504.32		53.09				

Conversion Factors: 1 PSI = 2.31 feet

AQUIFER TEST DATA SHEET (PUMPING WELL)

DHEB

Page 3 of 3

UNTR-CTIME France

Pump On: Date Pump Off: Date Duration of Aqu Pumping Recovery	/Time	(t)	Pretest Water Static Water Le Measuring Poi				Water Quality		
	Time Since Pump Started	Time Since Pump Stopped	Depth to Water	Pressure Transducer	Flow Rate	¥	Specific Conductivity	Temperature	Comments on factors affecting test data
Date	(min)	(min)	(ft)	(XD)	(gpm)				
1-14-09	540		504.33		53.04				
	600		504.34		52.99				I
1 15	660		504.34		53.04				
1-17-09	720		504.36		53.09				2
	960		504.40		53.24	6	378.C	1	1919A
	1200		504.49		53.19	_		-	anteg
	1440		504.48		52.99				,
	1480		504.48		52.94		58/		Digital ToTA
1	1930		504.57		53.19	55	2387	1	ANALOG TOTAL
1-18-09	2140		504.62		53.24				
	2400		504.64	143784	53.40		1907		DigiTale 17
	2440		504.61		53.19	57	4811	2	Amalog
	2880		504.54		52.99	1.0			Market News
	8120		504.47		52.89		180	10	91701 1700
1 1 1	3340		504.52		53.19	644	225	F	wn 109
1-19-09	3600		504.55		53.09				1
	3940		504.59		53.34	219	158		
	4080		504.64		63,24	TO A CONTROL			
	4320		504.51		52.99				
	12/4	148	1 704	1/12×10	C Fi	2/8 }	w	15-	247,763
	Ann	- 9	9/A/12	n O	Fin	LI.	w		-707,464

Conversion Factors: 1 PSI = 2.31 feet

AQUIFER TEST DATA SHEET (PUMPING WELL)

PROJECT NAME DATE: TYPE OF TEST: MEASURING EQ	- / 7	-07	PROJECT N PUMP DEP	NO: 197 TH: 5 RELL NO: E	2- 74' X00	-	WELL NO TEST NO DISTANCE HYDROG	KA EY EFROM F EOLOGIS	FB-5T105-EX00 PUNIFU PUMPING WELL:
Time Pump On: Date/ Pump Off: Date/ Duration of Aqui Pumping: Recovery:	Time		Static Water Le	Pretest Water Level Static Water Level: Measuring Point: Elevation of Measuring Point:			Water Quality		
Contr	Time Since	E Time Since	Depth to Water	X Pressure C Transducer	Flow Rate	£	Specific	Temperature	Comments on factors affecting test data
1-19.09	(min)	(min)	504,49	(AU)	(gpm) 52.84	 	 	-	
1-7-7-1-1	2	1	502.26		0		-		
-	9	Z	499.28		1		<u> </u>	_	
		3	498.02						
		4	197.83						
		5	497.80						
		6	497.75						
		7	497.74						
		8	497.73					η.	
		9	197.71						
		10	497.71						
		11	497.71						
		12	497.70						
		13	497.69						
		14	497.69						
			497.73						
		16	497.73						
		17	491,73						
		18	497.66						
		19	497.66 497.66						
		20	497.66						
		21							
		22	497.72						
		23	497.72						
		24	497.72						
		25	497.72						
		26	497.72						

Conversion Factors: 1 PSI = 2.31 feet

AQUIFER TEST DATA SHEET (PUMPING WELL)

Page <u>2</u> of <u>3</u>

PROJECT NAME DATE:		Q	PUMPED	тн: <u>5</u>	7/// 2 74/ X00/	<u> </u>			AFB-STIDS-EX DO PEX LOWERLY PUMPING WELL:
Time Pump On: Date Pump Off: Date Duration of Aqui Pumping: Recovery:	/Timeifer Test:		Pretest Water I Static Water Le Measuring Poin	iter Level Data Level evel: nt: easuring Point:_			Water Quality		
	Time Since Pump Started	Time Since Pump Stopped	Depth to Water	Pressure Transducer	Flow Rate	Ŧ	Specific Conductivity	Temperature	Comments on factors affecting test data
Date	(min)	(min)	(ft)	(XD)	(gpm)	+			
1-1909		37	497.72		0	+-	-		
		28	791,16			+	-	-	
	-		JA7 72		\vdash	+-	 	-	
	 	35	497.72		- -	+	-		
	-	40	NAT 71				 	\vdash	
		1	247 71			-	-		
		50	497.70		-	+	 	-	
		55	497 49	·	-	+			
	 		447 68			+	-		
	-	70	497 1.0			+	 	-	
		80	110.00			+	\vdash	-	
		90	497.68			+ :	 		
	-	100	497.67				†		
	-	110	497.67				-		
		120	497.67			+			
		150	49765		 	+	 		
	_	180	497.6 5 497.65			†	†		
		210	197.65			T	†		
			497.66			+-			
		270				†			
		300	497.65			†	-		
	<u> </u>	330				1			
		340	497.65			1			
	390	420							
	420	450	497.64						
	450	480			1	1			

Conversion Factors: 1 PSI = 2.31 feet

3 pm

4) PM

5)om

AQUIFER TEST DATA SHEET (PUMPING WELL)

Page 3 of 3

	PROJECT NAME				NO: PTH:		-			
	TYPE OF TEST:				VELL NO:		-			PUMPING WELL:
	MEASURING EQ	UIPMENT	:				-			Т:
		Data /Time /Time ifer Test:	(t)	Pretest Water Static Water Lo Measuring Poi	ater Level Data Level evel: nt: easuring Point:_			Water Quality		
	Date	Time Since	3. Time Since 5. Pump Stopped	ڪ Depth to Water	X Pressure	(Jack Rate	Нd	Specific Conductivity	Temperature	Comments on factors affecting test data
innem	Date	(11111)	480	70977	(XD)		-			
10 pm			540	497.66		0				
) (pan none 1	1-20	 	600			-				
12/011	7 0 0		460	~						
- an			700							
10 Am	1-20-09	1200		497.74						
1000			2040	497.43						
10 per 10 per 10 per		2640	3740	497.62						
non		3360		, (
10 km	1-22		4200							
Opm	1-23		4320					,		
	TAIKY	190	Ros	Vá hu	Told n	1e Tus	7 1'9	10	ne	NO MORE
	My	SURI	MYM			-21-0		20		
					V					
1										
]										
1										
]										

Conversion Factors: 1 PSI = 2.31 feet

508

AQUIFER TEST DATA SHEET (OBSERVATION WELLS)

Page ____ of _____

Time Data Pump On Date/Time Pump Off Date/Time Duration of Aquifer Test: Pumping Recovery	Pretest Water Le Static Water Le Measuring Poin	ter Level Data evel vel: t assuring Point:	_	Time Data Continuation		Water Level Data Continuation		
Date Time 1-12-09 300	Depth to Water	X Pressure C Transducer	(dbw) Pow sta	Date	Time	Depth to Water	X) Pressure (C) Transducer	(dbm) Rate
1-13-09 1615 1-14-09 1340	498.66	1						
		7						
						×		

507

AQUIFER TEST DATA SHEET (OBSERVATION WELLS)

Page / of /

PROJECT NAM DATE: TYPE OF TEST: MEASURING E		PUMP (DEPTH:		060104	TEST NO:	OM PUMPING	WELL:		
Pump On Date/Til Pump Off Date/Til Duration of Aquifer Pumping Recovery	me me Test	Pretest Water Lev Static Water Lev Measuring Point	Water Level Data Pretest Water Level Static Water Level Measuring Point Elevation of Measuring Point			Time Data Continuation		Water Level Data Continuation		
Date 1-12-09	Time /240 1602 /310	203.02 203.02 203.02	X Pressure O Transducer	(dbw)	Date	Time	(#) Depth to Water	X Pressure	in the second se	

523

AQUIFER TEST DATA SHEET (OBSERVATION WELLS)

Page _____ of _____

TYPE OF TEST		PUMP D	DEPTH: DEPTH: D WELL NO:	99//12	060104	DISTANCE FF	18 46 K ROM PUMPING OGIST:	WELL:	<u>d</u>		
Pump On Date/Ti Pump Off Date/Ti Duration of Aquife Pumping Recovery	me me or Test	Pretest Water Lev Static Water Lev Measuring Point; Elevation of Meas	el			Time Data Continuation		Water Level Data Continuation			
Date	Time	Depth (3) to Water	X Pressure C Transducer	(mdb) Rate	Date	Time	Bepth to Water	X Pressure O Transducer	(mdb) Rate		
1-12-09		493,42									
1-13-09	1612	493.40									
1-14-09	1330	493.34									
							-				
		1					1				
		-									

AQUIFER TEST DATA SHEET (OBSERVATION WELLS)

Page <u>/</u> of <u>/</u>

	PROJECT NO: 1971112	PIEZO NO: KAFB-0507
TYPE OF TEST: AQ	PUMP DEPTH: 574 FT. PUMPED WELL NO: KAFB - EXOO1	_ TEST NO:CONSTANT Rate _ DISTANCE FROM PUMPING WELL:
MEASURING EQUIPMENT: WAT	crlevel indicator, Transducer	HYDROGEOLOGIST: KODYOUNG

Time Pump On Date/Ti Pump Off Date/Ti	me	Pretest Water Lev	4		4	Data uation	Water Level Data Continuation			
Duration of Aquife	74.5	Measuring Point_	Topof	Richard	1					
Pumping		Elevation of Meas								
Recovery										
450		Depth to Water	Pressure Transducer	Flow Rate			Depth to Water	Pressure Transducer	Flow	
Date	Time	(ft)	(XD)	(gpm)	Date	0103	502.02	(XD)	(gpm)	
1/16/09	1132	502.14			1/17/09				_	
<u> </u>	1305	502.10	_		1/17/09	0502	502.03	,	_	
11	1315	502.09			1/17/09	0900	502.08			
	1326	502.09			1-14-09	1310	502,03			
	1337	502.08			1-17-09	1711	502.00			
11	1347	502.08			1-17-09	2104	502-04			
	1358	502.08		-	1-18-09	0101	502.07		<u> </u>	
"	1408	502.08			1-18-09	0504	502,07			
4	1418	502.08			1-18-09	0910	502.12			
à	1418	502.08			1-18-09	1312	50207			
"	1438	502.07		-	1-18-09	1704	502.02			
11	1448	502.06	_	travi	1-18-09	2104	502.04			
н	1459	502.06			1-19-09	0100	502.05			
11	1528	502.06			1-19.67	0500	502.05			
11	1602	500.06			1-19-09	0918	50312			
	1428	502.05			1-19-09	1257	50205	1		
11	1701	504.05				1				
11	1730	502.04								
11	1757	502.64					—			
И	1836	50204				- 100	-			
11	1902	502.04					7 /			
11	1931	502,04	-				/			
u	2005	502.04	-	1						
11	2031	502.03	40	and a						
4	2105	502.02								
11	2203	502.04								
11	2302	562.03	-							
1/17/09	2404	502.02								

Conversion Factors: 1 PSI = 2.31 feet

AQUIFER TEST DATA SHEET (OBSERVATION WELLS)

Page / of /

PROJECT NAME: KAFB DATE: 1110/09	PROJECT NO:	1971112 574 ft	TEST NO:	KAFB-0523 Constant Rate
MEASURING EQUIPMENT: WATE	rlevel Indica	KAFB-EXODI		OM PUMPING WELL: OGIST:ODD UD UNQ

Pump On: Date/Time Pump Off Date/Time Duration of Aquifer Test: Pumping		Wate	er Level Data		Time Data Continuation		Water Level Data Continuation			
		Pretest Water Le	vel							
		Static Water Level:								
		Measuring Point	Top of P	VC casing			1			
		Elevation of Meas	suring Point:				1			
Recovery										
		Depth to Water	Pressure Transducer	Flow			Depth to Water	Pressure Transducer	Flow	
Date	Time	(ft)	(XD)	(gpm)	Date	Time	(ft)	(XD)	(gpm)	
1/16/09	1153	493.51			1/17/09	0108	493.42			
71	1310	493.48			0	0507	493.41			
11	1321	493.48			11	0909	493.47			
11	1331	493.48			/1	1306	493.41			
11	1343	493.48			11	1707	493.40			
1(1354	493.48			n	2109	493.45			
/	1403	493.47			1 18/09	0106	493.48			
"	1413	493.47	-		1/18/09	0509	493.49			
u	1423	493.45			1-18-09	0916	493.56			
11	1434	493.44			1-18-09	1300	493.49			
"	1444	493.44			1-18-09	1658	493.42			
и	1954	493.44			1.18.09	2108	493.42			
n	1503	493.44			1-19-69	4010	493.45			
"	1533	498.44			1-19.09	0506	493.44			
11	1611	493.44	40-		1-19-09	0914	493.52			
11	1637	793.44			1-19-09	1309	493-41			
11	1708	493.43								
u	1138	493.42								
11	1804	493.43								
if	1842	493.43								
11	1908	493.43								
11	1937	49343								
ll.	2010	49343								
• 1	2030	493.43								
11	2/10	493.43								
-40	2209	49343								
· · ·	2306	493.43								
1/17/09	2409	493.41								

AQUIFER TEST DATA SHEET (OBSERVATION WELLS)

Page 1 of 1

Time	Data	Wate	er Level Data		Time	Data	Wate	r Level Data		
Pump On: Date/Ti Pump Off Date/Ti	me	Pretest Water Level Static Water Level: Measuring Point Top of The Costing			Contin	CO-4/4/2	Continuation			
Pumping			suring Point							
		Depth to Water	Pressure Transducer	Flow			Depth to Water	Pressure Transducer	Flow	
Date	Time	(ft)	(XD)	(gpm)	Date	Time	498.84	(XD)	(gpm)	
1/110/09	12010	49881			1/17/09	0510	498.85			
	1320	498.80			11	0915	498.92			
	1330	498.84			- 11	1302	498.86			
	1340	498.83			11	1704	498.86	20		
	1350	49885			11	2111	49890			
	1400	998.85			1118109	0109	498.94			
	1410	498.86			1/18/09	0512	498.94			
	1420	498.84			'11	0905	498.98		ary.	
	1430	49884			11	1805	498.93			
	1440	498.86			1-18-09	1665	498.90			
	1450	498.86			1-18-09	3111	49890			
	1500	498.87			1-19.09	0100	49892			
	1530	498.87			1-19-09	0509	498.92			
	1612	498.31			1-19-09	0911	498.97			
	1641	498.83			1-19-09	1317	498.90			
	11212	498.82				-				
	1742	498.81								
	1806	498.83								
	1844	498,83								
	1912	498.83								
	1939	498,84								
	2013	498.84					1			
	2038	498.89								
	2113	498.84								
	2213	498.85							<u> </u>	
	2310	498.85								

AQUIFER TEST DATA SHEET (OBSERVATION WELLS)

Page ____ of ___

		WLT, T	AANSOV.	INN	1	PIEZO NO: TEST NO: DISTANCE FRO HYDROGEOLO	ogist: <u>Rol</u>	b Young	
	Data	1,147,000	er Level Data			e Data		ter Level Data	
ump On Date/Tump Off Date/T		Pretest Water Le			Cont	inuation	ľ	Continuation	
Ouration of Aquife		Static Water Level: Measuring Point: Elevation of Measuring Point:			17				
umping									
ecovery		<u> </u>				,			
Date	Time	Depth to Water	X Pressure C Transducer	(Mdb) Rate	Date	Time	Depth to Water	Pressure Transducer	Flow
19-09	1410	50202	(AD)	(урп)	Date	Time	(11)	(XD)	(gpm)
11	1419	502.01							
ti .	1430	502.01							
n	1440	502.00							
11	1450	502.00							
ít	1500	502.00							
ıı	1511	501.99							
n	1522	501.99							
11	1532	501.99							
lı	1543	501.98							
//	1552	501.98							
U	1600	501.98							
h ·	1632	501.97			4		4		
11	1704	501.97							
11	1733	501.97	6.1.7					N.	
11	1808	501.97							
11		501.98							
11	2007	501.98							
11	2108	501.98	_						
10/09	1035	501.98			-				
6/09	223/	501.96							
-		301.76	10/	-	11				
20/09	1005		PINNE	on M	d 5 no	PYKMIS	luns	-	
	J. White								

Conversion Factors: 1 PSI = 2.31 feet 1 cubic foot = 7.48 gallons

AQUIFER TEST DATA SHEET (OBSERVATION WELLS)

PROJECT NAME: RAFB PROJECT NO: 1991112	PIEZO NO: KAFB-0508 TEST NO: REGUERY
TYPE OF TEST: AR PUMPED WELL NO: 12X 00/	DISTANCE FROM PUMPING WELL:
MEASURING EQUIPMENT: WLE, TRANSOUTER	HYDROGEOLOGIST:

Pump Off Date/Time Duration of Aquifer Test		52.000	er Level Data					r Level Data	
		Pretest Water Level			Continuation		Continuation		
		Measuring Point							
umping	_	Elevation of Mea	suring Point:						
lecovery	-	Ļ,							
		Depth to Water	Pressure Transducer	Rate			Depth to Water	Pressure Transducer	Flow
Date	Time	(ft)	(XD)	(gpm)	Date	Time	(ft)	(XD)	(gpm)
-19-09	1404	498-88					$\overline{}$		
	1415	498.85							
	1418	498.83							
	1422	49882							
	1430	498 81							
	1440	498.79							
	1450	498.78							
	1500	498.76							
	1510	498.76							
	1520	498.76							
	1530	498.76							
	1540	498.75							
	1550	498.75							
	1600	498.72							
	1630	498.70							
	1700	498.70							
	1728	498.69							
	1801	498.48							
	1908	498.64							
	1957	498.68							_
	2058	494.66							
	2158	498.66		-					
1-20/00	1045	498.72	-						
1/20/09		498-42				T.v	-		
12/109		498.60							
			1		and a	- 4/ /	110 1 11		
1-21-09	DO MI	ne han	a wiens	sure my	MIZ A	5 06 10	JU AW		

Conversion Factors: 1 PSI = 2.31 feet 1 cubic foot = 7.48 gallons

AQUIFER TEST DATA SHEET (OBSERVATION WELLS)

	1	
Page	- /	of
. age	·	· -

PROJECT NAM DATE: Y TYPE OF TEST MEASURING E	ME: KAF 19-09 - AQ	PROJECT PUMPE	PIEZO NO: KAFB - 0523 TEST NO: REPOURE 4 DISTANCE FROM PUMPING WELL: HYDROGEOLOGIST: KOD YOUNG						
Time Data Pump On: Date/Time Pump Off: Date/Time Duration of Aquifer Test: Pumping Recovery		Pretest Water Le Static Water Lev Measuring Point: Elevation of Mea	el:	=	Time Data Continuation		Water Level Data Continuation		
Date	Time	Depth to Water	X Pressure (C) Transducer	(mdb) Rate	Date	Time	Depth to Water	X Pressure C Transducer	(ddb)
1-19-09	1414	493.35		(3)			(/	(////	(gpiii)
ij	1424	493.34							
li	1435	493.34							
n n	1446	493.34							
"	14560	493.34							
u	1500	493.33							
н	1517	493.32							
ti .	1528	493.32							
11	1538	493.32							
ti.	1547	493.31							
п	1556	493.31							
и	11005	493.31							
il.	1638	493.30							
11	1659	493.33							
11	1728	493,32							
11	1803	493,33							
11	1910	493,33							
11	1959	493, 34							
il	2102	49335							
,11	2203	493,35							
12909	1042	493.48							
1/20/09	2240	493.36							
1/21/09	1016	493.35							
						V			

1-12-09 Sunny, Windy 0800 @ KAFB BAding 0900 @ KAFB-51105-EX001 DTW- 497.76 1 Setting pump & 574 For Tusts 1030TAKE Insito hoxxx back De pot get Clamps & TRANSduiers in place The pump being 15 house 8,5 gAllar A minute pump by whs Called Kumsuc Informed WYRY MYRY Called Flightline 846-7706 sat Thomas Sylmen; Previously Soft Smith MAS SAID IT WOULD be DK TO SET UP CAMP TRACTOR 1200 begin installing Jameduras.

1-12-09- Cont. Sunny, windy 1200 @ KAFB-508 1090- 498.70' DYB -4 506.00 514.65 SET TRANS due 1 @ 505 15 pm 1502 6,30 of HOD Above Transduce Scheduled Tust To Run EUREN 10 Minutes & To STARY @ 1500 1240 May TO KAFB-0507 DTW - 502.05' DTB-515.53' Set TRAPS QUIER @ 515.00' with 13.00 of HOD Above 9 RANS OVPUR RAISED 4 lowered To make 1350 @ KMFB-0523 DTW-493.42 DTB - Approximately 600' Set Transducer 30' Below STATIC WATER level 1530 chreved Test in 508 TRANSQUEER had Slipped pulled back up & manked Caple with Strappie

milen

Sunny, 370 1-13-09 0900 clean up paperwork 1000 FRONT desk MAIls, TRANS DOORK EX-001 ptw-497.76 DTB-58849 InsTAlle Transdure @ 5631 Pump WAS Installed P 574:00' BACKGROUND STARTED @ 1210 1230. go Clean out Truck get STRAW 1602 8 507 TAKE DYW of TRANS duren CAble. 1612 @ 523 TAKE DTW DTW = 493.40 No slippage of Transdura 1615@ 508 TAKE DYW DYW= 498.66 No Slippage of TRANS QUEEN DUEL

1-13-09 Cont.

1620 C EX-001 TAKE DITO

DIW = 497.60

5 mall slippage of TRANSOVER

CALLE '8" inch maybe.

Finish, putting out STRAW

For Enoston Control

1630 leave To 90 pick up

Camp TRAiler in Rio Rancho

1930 Leek @ Hotel, Jane

Sunny, 450 0900 leave for RAYB, 90 Sit up familya get Supplies, tan Tanifus 1300 PAILED MARK Holmes Informed him were Arady for Inspection the a chal's will come AUT between 2-3pm for 1310 @ 0507 DTW- 502.01 10 slippage, down loaded Test MANUAL RYAdings TAKEN GROM 1330 @ 0523 PTW 493.34 down load Test, MANUAL Readings Taken GROM Yop of Inner Well Casing C MANK down loaded BAro Troll 1340 @ 0508 DTW-49866 TAKEN FROM TOP of outer STEEL CASINA @ MAKK

DUPK

1400 C EX-001 DTW-497.54

NO 51, ppage; download

900 of 57001 CASING C

101King Tab.

1430 MARK Holmes & Chai's

Segura C Site for

Inspection,

Inspection,

Yotal digital O Analog 475558

1-18-09 0700 60 TO TRUMAN gate, ger Rob A PASS, Then drop him off @ love/Ace Vigent Care As hes sick, doing step TesTs Alone. on pumping well Agu- 497.65 Yunned on pump filled piping with H20 569 4/on @ 159pm 6916 € 567 DTW- 502.08 Stopped BACKGEOUND Trst Seque step in 507 Tery To begin @ 0920 0930 @ 523 DTW- 493.47 shiffoun & download 523 BACK GROWING, STARY STEP @ 940 down les of Baro ballows STARY BARO STEP. 940 0940 @ 508 DTW- 498.70 Shotdown of down lond BACKG10000 START STED START @ 950 941 @ EXOOL, Set up TRANSducen for first step (159pml 159pm STEP not working Tried Twice dayour down Z' Then Flow Slows Town About 39pm

84 1415-09 Cant. Palaulating flow with and Hall hevel 59ARTS climbing TAIKED with Doug were SKipping the 15gpm 574p START C 25gpm, 54ARTE d 25gpm Trst @ 1220 working much better 1340 Called Doug gave him His, He said To do next STEP @ 40 gpm 1400 MARK Holmes Visited 5. te, watched as we stanted nexT step @ 40 gpm 1430 - Taked with Doug He says go To 60 gpm 60gpm Test Will START @ 1650 1500 TAIKEd with Doug He warits US To

Pull the 1" pipe of

See what we get

with STEART D" pipe

A Tea this Test

1710 START Test ant caly MANUALS EVERY 5 minutes

1-16-09 0830 leave for KAFB 0900 @ Pump Test Site 1030 Doug Called, SAId To Run Constant Rate Your C. 539pm, Called Niek To Pame To Site 1130 Wento All Observation Sites downloaded Tests, Shedoled Constant Rate Tusts to START @ 1300, 1300 Constart Rate Test STARTED P 52.99 9 pm 1 grew down Approx 6 STALilized flow @ 52.50 gallons per minute. TAKING ALL MANUAL KENding 1930 Rob leaves Site will be bACK @ 2000 1800 TOOK TOTALIZER REAdings Digital - 32,193 Ant log - 507685 2000 Rob on Site, Hulton of WAC Continue Ryndings

1-17-09 Sunny, Mild

0800 Denni's & Nick Brell

on Site, Rold Herton

leave, whe Filled Generalen

with Divsel

0900 90 Take Ruadings

1300 Take Readings

1700 Take Readings

3000 Rold Pleeton on Site

Denni's & Niciz leave Site

2100 Rold Takes Ruadings

2400 STill on Site

500 Rob Takes Readings

0800 Rob Takes Readings

0800 Dennis & Mill pack

on Site, Rob & Herton

Jeave

0900 Dennis Takes Readings

1300 Take Reading,

download Transdures

1700 Take Readings

2000 Rob & Herton

Site, Nick & Dennis Jeave

2100 Rob Took Readings

SURAY, 32-580 1-19-09 0100 Rob TOOK Rendings 0500 Rob Took Rendings 0800 DENNIS & NIEK BACK on Site, Rob & HerTOX LYAUE 0900 DEANIS TOOK RYAdings 1300 DENAIS TOOK REAdings of prepert for shut down, Recovery Trut Rob back on site for First 2-3 hrs of Recovery Jest. 1400 RUEDVERY JUST STARTS 1600 ROS done RYADY TO leave 1700 Atten TAIKing with Doug & he Talked with Deb IT WAS determined because Recovery was So RApid we could Sporten MARUAL REAding Vahrago 6, Then I has To 10, The 12 hr. REAdings

Solm 4 1-21-09 Sunny 1-20-09 10 AM Weny 40 5, 42 40 Took 10 AM Rundings Moole cen To Camp Tenilue ged 12 hour, Rendings Petunn To Pionack Ren TALS Doug Called spid fo Take ToTAl Cost With Conunton Shauld b4 9987.03 10 pm Went To TAKE 12 hour no more manual Rundings Rynding, was detained TAIKED A LOUT TOMORROW Will do stry Trite de by Syrunity AS An openation had occurred Cleanup. And I did not See Will go back an site The plane in the dark even to Ally got handings INgin After plane TRAUNG AS, KUMSPR is d / 4 T 5, 46 not allowing Acres 40 pad 5. 4 hng.

ATTACHMENT B KAFB LANDFILL PERMIT FOR IDW DISPOSAL

KIRTLA	ND AFB LANDFILL SHORT-TERM PASS	
(TEN	MPORARY, LESS THAN 90 DAYS)	A CAM
PASS NUMBER	DATE ISSUED:	
T _ 0 90	22 20n	00
VALID:		
FROM: 33 500 09	10: 31 5an	90
CONTRACTOR	CONTRACT NUMBER VEHICLE LICE	NSE NUMBER
MWH AMERICANS IN	12.110EE EIGE	
377 ABW/EM REPRESENTATIVE	411.010 08 13-8777 C 36	CV
pbni 2	40704	
/ AFD FORTH DAY		

KAFB FORM 234, MAR 97

KAFBI 32-7002

ATTACHMENT C KAFB GROUNDWATER DISCHARGE AUTHORIZATION

Deborah Carter-Drain

Subject: FW: Final Aquifer Test Work Plan

----Original Message----

From: Segura, Christopher G Civ USAF AFMC 377 MSG/CEANC

Sent: Friday, January 09, 2009 1:06 PM

To: Holmes, Mark D Civ USAF AFMC 377 MSG/CEANR Cc: Crosgrove, Cole G Civ USAF AFMC 377 MSG/CEANC

Subject: FW: Final Aquifer Test Work Plan

Mark,

I see no issue with this proposed discharge provided that nitrate+nitrite concentrations in the discharge water be less than the New Mexico Water Quality Standards for Interstate and Intrastate Surface Waters; Irrigation, Livestock Watering, and Wildlife Habitat Uses, 20.6.4.900J NMAC standard of 132 mg/L.

Thank you,

Christopher G. Segura
Water Quality Program Manager
Natural Resources Management Branch
Kirtland AFB, NM 87117
505-853-5443, DSN 263-5443
Christopher.Segura@Kirtland.af.mil

----Original Message----

From: Holmes, Mark D Civ USAF AFMC 377 MSG/CEANR

Sent: Wednesday, December 17, 2008 10:15 AM

To: Segura, Christopher G Civ USAF AFMC 377 MSG/CEANC

Subject: FW: Final Aquifer Test Work Plan

Chris

Attached is the workplan for conducting the aquifer test on the groundwater extraction well. Again, we anticipate production of 200,000-400,000 gallons of water that will be discharged in the watercourse that receives any discharge from production well KAFB 7. We ensure that the discharge does not cause surface erosion and construct sediment barriers (hay bales) along the watercourse. Pat processed this under the NPDES permit, with the main criteria being to meet certain standards stated in the workplan.

The attached workplan is being revised to change the anticipated volume of water, replace Pat's name with yours, and include a lab report to substantiate the nitrate concentration detected in the plume in which the extraction well is installed; I will forward the revised workplan to you this week, but am sending this now for your initial review.

Thanks

//Signed//

Mark Holmes

Project Manager

Environmental Management

Restoration Section

505 846-9005

From: Deborah C Drain [mailto:Deborah.C.Drain@us.mwhglobal.com]

Sent: Friday, December 05, 2008 4:15 PM

To: Holmes, Mark D Civ USAF AFMC 377 MSG/CEANR

Subject: Final Aquifer Test Work Plan

Mark,

Attached is the final aquifer test work plan. If you are good with this version, all we will need is the transmittal letter and the signed document certification form.

Deb